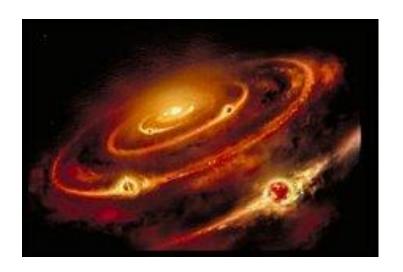
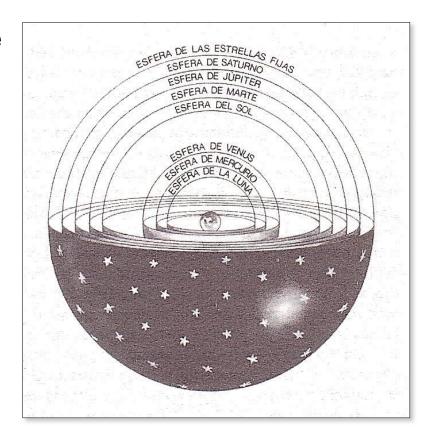
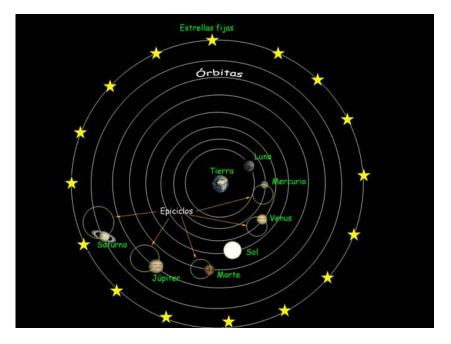

El Sistema Solar


Parte 1: El origen y el estudio del Sistema Solar.

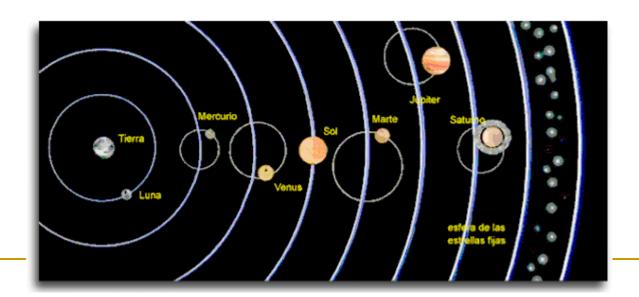
¿Cómo se formó el Sistema Solar?

- El sistema solar se habría formado hace unos 4.600 m.a. a partir de una enorme nube de polvo y gas, principalmente hidrógeno, helio y algunas trazas de otros elementos más grandes.
- Posiblemente una perturbación externa provocada por la explosión de una estrella lejana, provocó el colapso de la nebulosa y producto de la gravedad empezó a girar y a contraerse hacia el interior.
- La densa bola de gas que se formó en el centro empezó a girar cada vez más rápido y a aumentar su densidad hasta alcanzar altas temperaturas que desencadenaron las reacciones de fusión nuclear, que dieron origen al primitivo sol en su centro.


- Al girar, la nebulosa se acható y formó un disco alrededor de la condensación central.
- Mientras tanto, con la materia que había en el interior del disco, se fueron formando los objetos más pequeños del Sistema Solar, como los planetas, los asteroides y los cometas.
- Esta teoría se ha ido confirmando mediante las modernas observaciones astronómicas que han revelado estrellas en formación como las Pléyades, con sus primitivos sistemas planetarios.

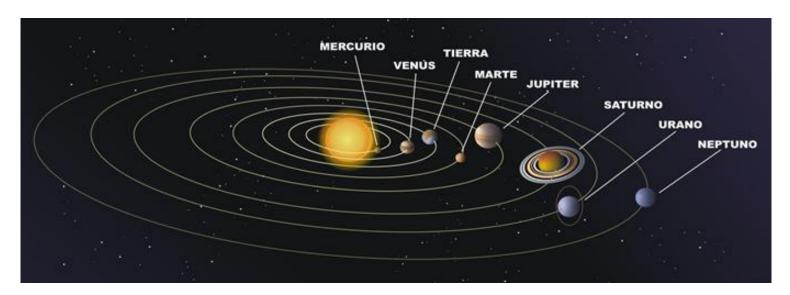

Modelos de Sistema Solar

- Los primeros que intentaron explicar el funcionamiento de las estrellas, de los planetas y el rol de la Tierra en el universo, fueron los griegos.
- Entre los siglos VI al II a.C. desarrollaron modelos geométricos para relacionarlos con sus observaciones.
- Aristóteles y la escuela pitagórica proponían un cosmos formado por esferas concéntricas que giraban alrededor de la Tierra, en las cuales los astros estaban fijos, siendo la Tierra el centro del Universo.



a) modelo geocéntrico

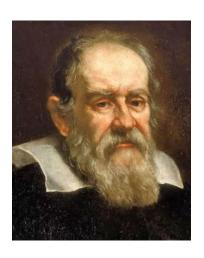
- En el siglo II d.C., Claudio Ptolomeo (o Tolomeo), en su tratado de astronomía conocido como Almagesto (que en árabe significa el más grande), planteó un Modelo Geocéntrico del Universo en el que la Tierra está en el centro.
- En este modelo, la Tierra permanecía estacionaria mientras los planetas, la Luna y el Sol (considerados como planetas) describen complicadas órbitas como círculos dentro de otros círculos alrededor de ella.

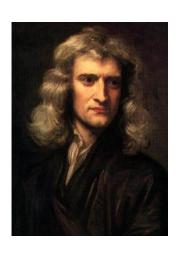


- Con el Modelo Geocéntrico, los sabios de la antigüedad podían predecir la posición de los planetas conocidos, es decir, Mercurio, Venus, Marte, Júpiter y Saturno, además de la Luna y el Sol, (que eran contados entre los planetas).
- Sin embargo, Aristarco de Samos, en el mismo siglo, propuso que la Tierra giraba alrededor del Sol, teoría que no fue tomada en cuenta y el modelo geocéntrico de Tolomeo, siguió predominando durante casi 1500 años.

b) modelo heliocéntrico

Unos 1400 años después, Nicolás Copérnico retoma las ideas de Aristarco de Samos y propone un modelo llamado heliocéntrico porque ubica al Sol en el centro del universo y donde los planetas describen circunferencias en torno de él. Aunque este modelo era menos predictivo que el de Ptolomeo, tenía la ventaja de ser mucho mas simple.


- Posteriormente el modelo fue enriquecido con los aportes de otros astrónomos como Tycho Brahe y Johanes Kepler, que en el Siglo XVI propuso que las órbitas de los planetas eran elipses en lugar de circunferencias.
- Galileo Galilei, quien realiza las primeras observaciones usando un telescopio, descubrió que Júpiter tiene satélites naturales, y más tarde Isaac Newton, elaboro las primeras ecuaciones de la dinámica de los objetos del sistema solar.

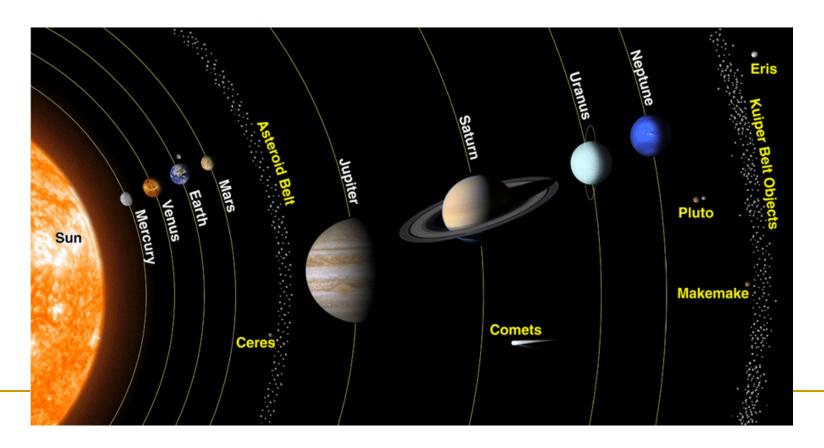

Tycho Brahe

Johanes Kepler

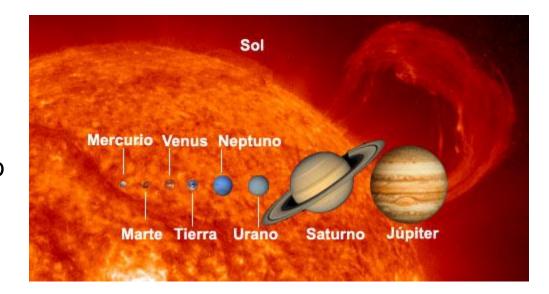
Galileo Galilei

Isaac Newton

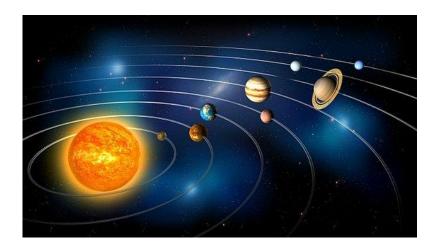
- Desde el renacimiento en el Siglo XV y a partir de los aportes de Copérnico, comienza una nueva era de la astronomía, donde el conocimiento esta basado en modelos matemáticos y en rigurosas observaciones científicas instrumentales.
- Esta forma de conocer el universo es lo que ha permitido la ampliación de las fronteras del conocimiento del espacio, hasta límites insospechados y a la exploración de otros cuerpos celestes mucho más allá de nuestra galaxia.

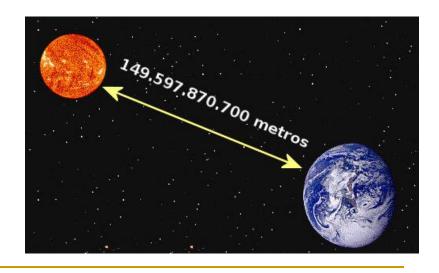


El Sistema Solar

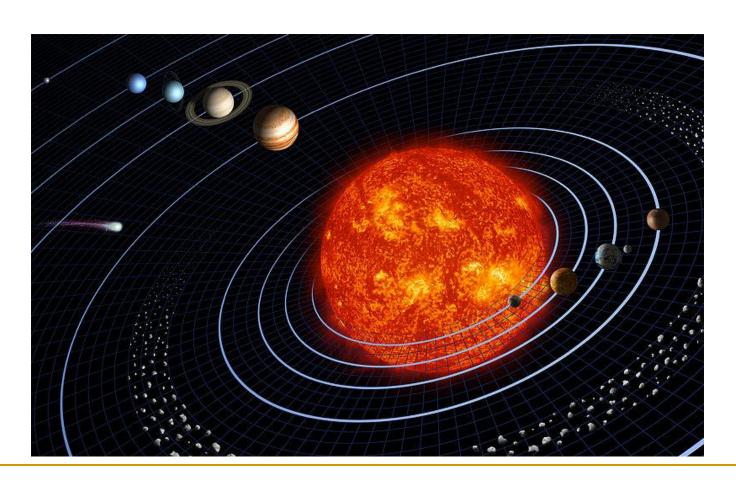

Parte 2: Características del Sistema Solar.

El Sistema Solar está formado por el Sol, varios objetos celestes como los planetas y sus satélites, el polvo y el gas interplanetario y un gran número de asteroides y cometas, los que se mantienen unidos por el efecto de la gravedad del Sol.




Las magnitudes del Sistema Solar

- La mayor parte de la masa del Sistema Solar, aproximadamente el 99.85%, la posee el Sol.
- De los numerosos objetos que giran alrededor de esta estrella, gran parte de la masa restante se concentra en ocho planetas, de los cuales Júpiter posee la mayor parte de esta masa restante.



- Las órbitas de los planetas son prácticamente circulares y transitan dentro de un disco casi plano llamado eclíptica.
- Como las distancias astronómicas son tan grandes, los científicos han creado unidades especiales para abarcar estas distancias. Las dimensiones al interior del sistema solar se miden en **Unidades Astronómicas, UA,** que corresponde a la distancia promedio entre la Tierra y el sol, aprox., unos 150 millones de kilómetros.

Las **órbitas** de los **planetas** ocupan un volumen de 80 UA, mientras que las de los **cometas** dan al sistema una dimensión total de 200.000 UA, ya que sus orbitas son muy excéntricas (parecidas a una parábola) y se extienden hasta 50.000 UA o más.

El Sistema Solar

Parte 3: Los componentes del Sistema Solar.

Los planetas

- Los planetas del Sistema Solar son ocho y para que un cuerpo celeste sea considerado planeta, se requieren las siguientes propiedades, establecidas por la Unión Astronómica Internacional el año 2006:
- 1. Orbitar alrededor del Sol
- 2. Tener suficiente masa para que la fuerza de atracción gravitacional les dé una forma prácticamente esférica.
- 3. Haber limpiado la vecindad de su órbita de objetos sólidos.
- Estos nuevos criterios es lo que deja a Plutón fuera de la categoría de planetas, pasando a ser un planeta enano o planetoide, junto a Eris, Ceres, Sedna, Makemake y otros pocos cuerpos más.

La siguiente tabla muestra información resumida sobre los planetas del sistema solar:

Planeta	Radio ecuatorial (km)	Masa (kg)	Distancia al Sol (U.A)	Periodo de rotación	Periodo de traslación	Aceleración de gravedad (m/s²)
Planetas terrestres o interiores						
Mercurio	2.440	3,3 x10 ²³	0,387	58,6 días	87,97 días	3,7
Venus	6.052	4,87 x10 ²⁴	0,72	243 días	224,7 días	8,87
Tierra	6.378	5,97 x10 ²⁴	1	23,93 hrs	365,3 días	9,78
Marte	3.397	6,42 x10 ²³	1,52	24,62 hrs	686,98 días	3,71
Planetas jovianos o exteriores						
Júpiter	71.492	1,89 x10 ²⁷	5,2	9,84 hrs	11,86 años	23,12
Saturno	60.268	5,69 x10 ²⁶	9,5	10,23 hrs	29,46 años	9,05
Urano	25.559	8,68 x10 ²⁵	19,2	17,9 hrs	84,01 años	8,69
Neptuno	24.746	1,02 x10 ²⁶	30,1	16,11 hrs	164,8 años	11,15

Características generales de los planetas

PLANETA CARACTERÍSTICAS GENERALES DE LOS PLANETAS DEL SISTEMA SOLAR

Mercurio

Es muy denso, al parecer, debido a su gran núcleo compuesto de hierro. Prácticamente no tiene atmósfera y su superficie está marcada por impactos de asteroides (cráteres). Temperatura: entre - 180 y 430 ° C.

Venus

Tiene una atmósfera de dióxido de carbono (CO_2) 90 veces más densa que la de la Tierra; esto causa un efecto invernadero que hace que la atmósfera venusiana conserve mucho el calor. Temperatura: promedio de 480 $^\circ$ C

Tierra

Es el único planeta con agua líquida y abundante oxigeno. Esta a una distancia optima del Sol lo que permite el desarrollo de la vida tal como la conocemos. Temperatura: entre - 70 y 50 ° C

Marte

Posee una superficie caracterizada por rocas de color rojizo, gigantes volcanes y grandes desiertos. Tiene una delgada atmósfera de CO_2 , que hace al planeta seco y frío, con capas polares de dióxido de carbono sólido o nieve carbónica. Temperatura: entre - 120 y 25 $^{\circ}$ C.

Características generales de los planetas

PLANETA CARACTERÍSTICAS GENERALES DE LOS PLANETAS DEL SISTEMA SOLAR

Júpiter

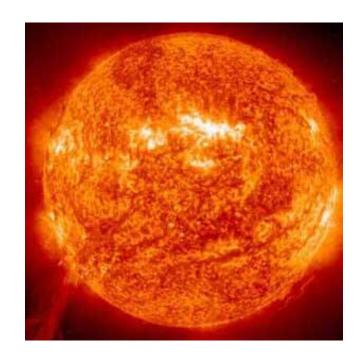
Es el mayor de los planetas. Su atmósfera de hidrógeno y helio contiene nubes de color pastel y su inmensa magnetosfera, anillos y satélites, lo convierten en un sistema planetario en sí mismo. Temperatura: promedio de - 150 ° C.

Saturno

Rivaliza con Júpiter en cuanto a tamaño y estructura, pero tiene un sistema de anillos más complicado y con mayor número de satélites, entre los que se encuentra Titán, una luna que posee una atmósfera densa. Temperatura: promedio de - 180 ° C

Urano

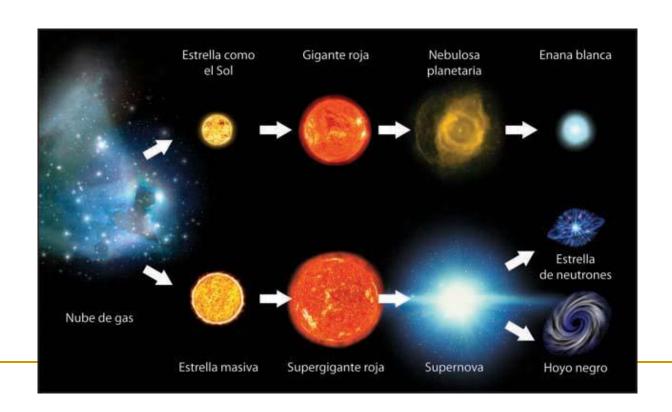
Urano, también con una serie de anillos a su alrededor, se distingue porque gira a 98° sobre el plano de su órbita. Tiene poco hidrógeno en comparación con los dos gigantes. Fue descubierto en 1781. Es el primer planeta descubierto, que no se conocía desde la antigüedad. Temperatura: - 214° C


Neptuno

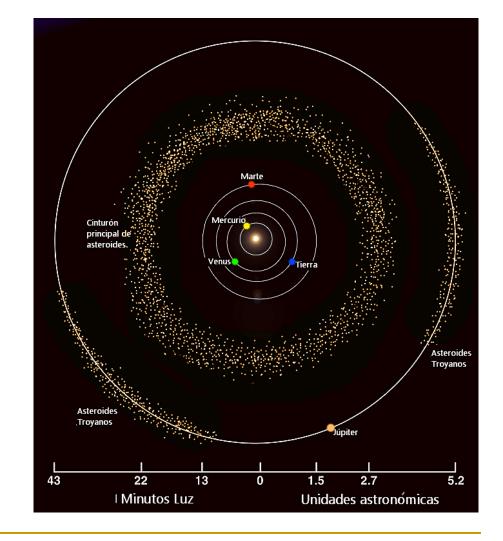
Fue el último de los planetas exteriores descubierto, recién en 1846, ni siquiera debido a la observación directa, sino, gracias a complejas predicciones matemáticas. Tiene una atmósfera tormentosa y delgadas nubes de metano helado. Temperatura promedio de -220 ° C.

El Sol

- El Sol es una estrella que tiene unos 5.000 millones de años de edad y consiste en una gigantesca esfera de un diámetro de 1,4 millones de kilómetros, formada por hidrógeno y helio.
- Su energía proviene de la fusión nuclear, y aunque en su interior convierte 600 millones de toneladas de hidrógeno en helio por segundo, tiene tanta masa (2 × 10³⁰ kg) que puede continuar brillando con su luminosidad actual, durante unos 6.000 millones de años más.


- El Sol tiene 750 veces la masa de todos los planetas y siete veces la de una estrella de tamaño mediano.
- En su núcleo, producto de las reacciones nucleares, parte de su masa se convierte en radiación electromagnética, un tipo de energía que calienta los demás objetos del Sistema Solar que giran en torno suyo, debido a su enorme fuerza de gravedad.

- Esta estrella tiene una estructura de capas y su gravedad es tan grande, que los fotones producidos en el núcleo, podrían demorar millones de años en llegar a la superficie solar.
- En su estado actual, el Sol no se expande ni se contrae, debido a que existe un balance entre la fuerza de gravedad que tiende a comprimirlo hacia el centro y la fuerza expansiva producida por la energía nuclear liberada por el núcleo en su interior.



- Al acabarse el combustible nuclear del Sol, su masa y gravedad interna disminuirán haciendo que se expanda, transformándose en una estrella gigante roja.
- Cuando eso ocurra, el Sol engullirá a Mercurio y Venus, y probablemente, alcance a la Tierra también.
- Después podría transformarse en una nebulosa, y finalmente, convertirse en una estrella enana blanca para siempre.

Los asteroides

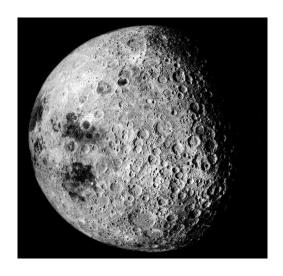
- Son pequeños astros del Sistema Solar, que se encuentran entre las órbitas de Marte y Júpiter (en el Cinturón de Asteroides), y probablemente son restos de un antiguo planeta que se destrozó.
- Su tamaño no alcanza los 1.000 km se diámetro. Los que tienen más de 300 km son esféricos, y los más chicos son irregulares.
- Los más pequeños tienen un diámetro inferior al de la cabeza de un alfiler y se

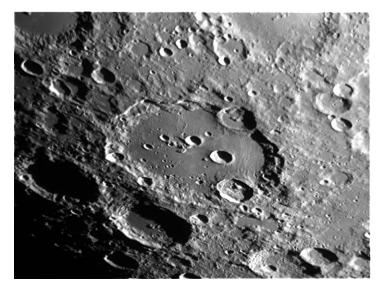
conocen como meteoroides.

Los cometas

La mayoría son cuerpos que se encuentran en el extremo más alejado del Sistema Solar, pero algunos tienen órbitas que los acercan al Sol y de vez en cuando brillan resplandecientes y se pueden ver.

Todos los cometas tienen un núcleo de hielo y polvo o «bola de nieve sucia» y cuando se acercan al Sol, el núcleo se vaporiza y se forma una cabeza brillante que los caracteriza y una larga cola de polvo y gas. Por lo general, sus diámetros oscilan entre 5 a 10 km. Como tienen órbitas tan grandes y pueden alejarse tanto del sol algunos pueden verse una vez cada 100 años o más.

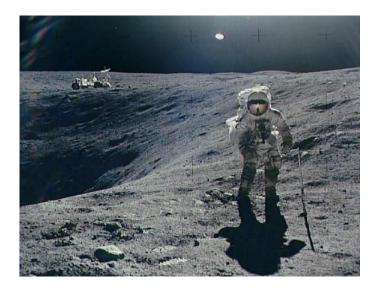

Los meteoritos


- Los meteoritos son meteoroides (pequeños cuerpos de polvo y roca producto de fragmentos de cometas o asteroides) que chocan contra la Tierra.
- Cada año penetran en la Tierra más de 3.000, la mayoría de los cuales pesan más de un kilo.

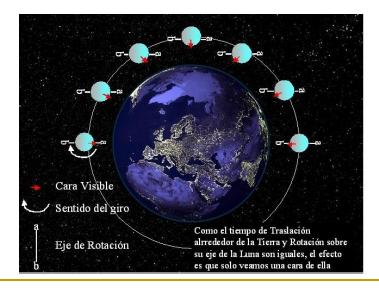
La mayor parte cae en los océanos, pero cada año se recogen unos seis que se han visto caer en tierra firme, mientras que y otros, se descubren por casualidad. Normalmente se los conoce como estrellas fugases por la estela que dejan al atravesar la atmósfera a gran velocidad.

- Los estudios en los laboratorios sobre los meteoritos han revelado mucha información acerca de las condiciones primitivas de nuestro Sistema Solar.
- Las superficies de
 Mercurio, Marte y
 diversos satélites de los
 planetas, incluyendo la
 Luna, muestran los
 efectos de un intenso
 impacto de asteroides al
 principio de la historia del
 Sistema Solar.

- A lo largo de su historia, la Tierra ha recibido un gran número de impactos de meteorito. El momento en que los bombardeos fueron más frecuentes fue hace 3.500 millones de años y se formaron cráteres que han ido erosionando con el tiempo.
- Los de formación posterior, de los que se han identificado más de 150, han permanecido hasta hoy.
- Algunos tienen cientos de miles de años, pero otros se formaron recién en el Siglo XX.


La luna

- La **Luna** es el satélite natural que orbita en torno de la **Tierra** a unos 384 mil kilómetros de radio y con un periodo de traslación 29, 5 días.
- Su gravedad es 1/6 de la Tierra y su periodo de rotación es de 24 horas. Tiene una masa de 7,35 x 10 ²² kg y su diámetro es de 3.476 Km de longitud.
- La temperatura en su superficie es extrema, oscilando entre los -153
 ° C en la noche y los 107 ° C de calor durante el día.



- A pesar de su tamaño y lo débil de su fuerza de gravedad, la Luna posee una atmósfera muy tenue de gases que se mantienen en muy baja concentración en torno a la superficie lunar.
- Estos gases como nitrógeno y monóxido de carbono provienen tanto del interior de la Luna como de la superficie, cuando partículas del espacio chocan con los materiales del suelo lunar provocando la liberación de gas.

- La Luna mantiene el mismo lado que enfrenta la Tierra en todo momento. Esta condición, en que el giro de un cuerpo es precisamente igual (o sincronizado) a su revolución alrededor de otro cuerpo, es conocido como órbita síncrona.
- Según la teoría de su origen, hace 4.5 millones de años algunos objetos grandes golpearon la **Tierra** y arrojaron materiales que se juntaron en su órbita alrededor de ésta. Las piezas chocaron entre sí repetidamente, se amalgamaron y se fundieron para finalmente enfriarse y convertirse en la **Luna** que vemos hoy.

